Pages

MATRIK'S

Matriks adalah kumpulan bilangan berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan-bilangan yang terdapat di suatu matriks disebut dengan elemen atau anggota matriks. Dengan representasi matriks, perhitungan dapat dilakukan dengan lebih terstruktur. Pemanfaatannya misalnya dalam menjelaskan persamaan linier, transformasi koordinat, dan lainnya. Matriks seperti halnya variabel biasa dapat dimanipulasi, seperti dikalikan, dijumlah, dikurangkan dan didekomposisikan.

MATRIK'S SATUAN DAN MATRIK'S INVERS
MATRIKS SATUAN
adalah suatu matriks bujur sangkar, yang semua elemen diagonal utamanya adalah 1, sedangkan elemen lainya adalah 0.
Notasi : I (Identitas)
I2 = é 1 0 ù
ë 0 1 û
I3 = é 1 0 1 ù
ê 0 1 0 ú
ë
0 0 1 û

Sifat AI = IA = A

MATRIKS INVERS
Jika A dan B adalah matriks bujur sangkar dengan ordo yang sama dan AB = BA = 1, maka B dikatakan invers dari A (ditulis A-1) dan A dikatakan invers dari B (ditulis B-1).
Jika A = é a b ù , maka A-1 =     1       = é  d -b ù
Jika A =
ë c d û , maka A-1 = ad - bc ttt ë -c  a û

  • Bilangan (ad-bc) disebut determinan dari matriks A

  • Matriks A mempunyai invers jika Determinan A ¹ 0 dan disebut matriks non singular.

    Jika determinan A = 0 maka A disebut matriks singular
Sifat A . A-1 = A-1 . A = I
Perluasan
A . B = I    ® A = B-1      B = A-1
A . B = C
® A = C . B-1   B = A-1 . C
Sifat-Sifat
1. (At)t = A
2. (A + B)t = At + Bt
3. (A . B)t = Bt . At
4. (A-t)-t = A
5. (A . B)-1 = B-1 . A-1
6. A . B = C
® |A| . |B| = |C|


MENYELESAIKAN PERSAMAAN SISTEM LINIER


ax + by = p     ditulis
cx + dy = q

   A     X      B

é a b ù é x ù =   é p ù
ë c d û ë y û =   ë q û
AX = B , maka X = A-1 . B

  1. Cara Matriks

    é x ù =     1        = é d -b ù é p ù
    ë y û    ad - bc      ë -c a û ë q û


  2. Cara Determinan = =

    x =
    Dx
    ê p b ú
    ê q d ú
    Dy
    ê a p ú
    ê c q ú
    ————— =
    —————— ; y = ———— = ——————
    D
    ê a b ú
    ê c d ú 
    D
    ê a b ú
    ê
    c d ú

Transformasi Geometri

Transformasi adalah suatu perpindaban/perubaban.

  1. TRANSLASI (Pergeseran sejajar)

    Matriks
    Perubahan
    Perubahan
    é a ù
    ë bû
    (x,y) ® (x+a, y+b)
    F(x,y) = 0 ® (x-a, y-b) = 0
    Ket :
    x' = x + a ® x = x' - a
    y' = y + b ® y = y' -b
    Sifat:

    • Dua buah translasi berturut-turut é a ù diteruskan dengan
                                                   ë b û
      dapat digantikan dengan 
      é c ù translasi tunggal é a + c ù
                                       ë d û                       ë b + d û

    • Pada suatu translasi setiap bangunnya tidak berubah.


  2. REFLEKSI (Pencerminan terhadap garis)

    Pencerminan terhadap
    Matriks
    Perubahan Titik
    Perubahan fungsi
    sumbu-x
    é 1 -0 ù
    ë 0 -1 û
    (x,y) ® (x,-y)
    F(x,y) = 0 ® F(x,-y) = 0
    sumbu -y
    é -1 0 ù
    ë -0 1 û
    (x,y) ® (-x,y)
    F(x,y) = 0 ® F(-x,y) = 0
    garis y = x
    é 0 1 ù
    ë 1 0 û
    (x,y) ® (y,x)
    F(x,y) = 0 ® F(y,x) = 0
    garis y = -x
    é -0 -1 ù
    ë -1 -0 û
    (x,y) ® (-y,-x)
    F(x,y) = 0 ® F(-y,-x)= 0


    Ket. : Ciri khas suatu matriks Refleksi adalah determinannya = -1


    SIFAT-SIFAT

    1. Dua refleksi berturut-turut terhadap sebuah garis merupakan suatu identitas, artinya yang direfleksikan tidak berpindah.

    2. Pengerjaan dua refleksi terhadap dua sumbu yang sejajar, menghasilkan translasi (pergeseran) dengan sifat:
      • Jarak bangun asli dengan bangun hasil sama dengan dua kali jarak kedua sumbu pencerminan.
      • Arah translasi tegak lurus pada kedua sumbu sejajar, dari sumbu pertama ke sumbu kedua. Refleksi terhadap dua sumbu sejajar bersifat tidak komutatip.

    3. Pengerjaaan dua refleksi terhadap dua sumbu yang saling tegak lurus, menghasilkaan rotasi (pemutaran) setengah lingkaran terhadap titik potong dari kedua sumbu pencerminan. Refleksi terhadap dua sumbu yang saling tegak lures bersifat komutatif.

    4. Pengerjaan dua refleksi berurutan terhadap dua sumbu yang berpotongan akan menghasilkan rotasi (perputaran) yang bersifat:
      • Titik potong kedua sumbu pencerminan merupakan pusat perputaran.
      • Besar sudut perputaran sama dengan dua kali sudut antara kedua sumbu pencerminan.
      • Arah perputaran sama dengan arah dari sumbu pertama ke sumbu kedua.


  3. ROTASI (Perputaran dengan pusat 0)

    rotasi
    matriks
    perubahan titik
    perubahan fungsi
    ½ p
    é0  -1ù
    ë1 -0 û
    (x,y) ® (-y,x)
    F(x,y) = 0 ® F(y,-x) = 0
    p
    é-1  0ù
    ë1 -1 û
    (x,y) ® (-x,-y)
    F(x,y) = 0 ® F(-x,-y) = 0
    3/2 p
    é0  -1ù
    ë-1 0 û
    (x,y) ® (y,-x)
    F(x,y) = 0 ® F(-y,x) = 0
    q
    écosq -sinq ù
    ësinq  cosq û
    (x,y) ® (x cos q - y sinq, x sin q + y cos q)
    F(x,y) = 0 ® F(x cos q + y sin q, -x sin q + y cos q) = 0

    Ket.: Ciri khas suatu matriks Rotasi adalah determinannya = 1

    SIFAT-SIFAT

    1. Dua rotasi bertumt-turut mempakan rotasi lagi dengan sudut putar dsama dengan jumlah kedua sudut putar semula.

    2. Pada suatu rotasi, setiap bangun tidak berubah bentuknya.

      Catatan:

      Pada transformasi pergeseran (translasi), pencerminan (refleksi) dan perputaran (rotasi), tampak bahwa bentuk bayangan sama dan sebangun (kongruen) dengan bentuk aslinya. Transformasi jenis ini disebut
      transformasi isometri.


  4. DILATASI (Perbesaran terhadap pusat 0)

    Dilatasi
    Matriks
    Perubahan titik
    Perubahan fungsi
    (0,k)
    ék  0ù
    ë0  kû
    (x,y)®(kx,ky)
    F(x,y)=0®F(x/k,y/k)

    Ket.:

    (0, k) merupakan perbesaran atau pengecilan dengan tergantung dari nilai k.

    Jika A' adalah peta dari A, maka untuk:
    a. k > 1 ® A' terletak pada perpanjangan OA
    b. 0 < k < 1 ® A' terletak di antara O dan A
    c. k > 0 ® A' terletak pada perpanjangan AO


  5. TRANSFORMASI LINIER

    Ditentukan oleh matriks
    éa  bù
                                    
    ëc  dû

    é x' ù = é a b ù é x ù
    ë y' û
       ë c d û ë y û


    é x ù =    1        é a -b ù é x' ù
    ë y û
       ad - bc     ë -c d û ë y' û 

    Perubahan Titik
    Perubahan Fungsi
    (x,y)®(ax+by, cx+dy)
    F(x,y)=0 ® édx - by , -cx + ay ù
                    ëad - bc    ad - bc û

    Prinsipnya adalah mencari matriks invers dari matriks transformasi yang diketahui.

Komposisi Transfromasi dan Transformasi Invers


KOMPOSISI TRANSFORMASI
Jika A =   é a b ù adalah T1 dan B = é e f ù adalah T2
ttt       
  ë c d û                          ë g hû

maka T2 ° T1 = BA =
é e f ù é a b ù
                            
ë g hûë c d û
® menyatakan transformasi T1 dilanjutkan dengan T2

TRANSFORMASI INVERS
Jika suatu transformasi diwakili oleh matriks M, memetakan titik P ke P1, maka transformasi ini memetakan P1 ke P, diwakili oleh matriks M-1 (yaitu jika M-1 ada).

OPERASI ALJABAR

OPERASI HITUNG BENTU ALJABAR
Di Kelas VII, kamu telah mempelajari pengertian bentuk aljabar, koefisien, variabel, konstanta, suku, dan suku sejenis. Untuk mengingatkanmu kembali, pelajari contoh-contoh berikut.

1. 2pq 4. x2 + 3x –2
2. 5x + 4 5. 9x2 – 3xy + 8
3. 2x + 3y –5

Bentuk aljabar nomor (1) disebut suku tunggal atau suku satu karena hanya terdiri atas satu suku, yaitu 2pq. Pada bentuk aljabar tersebut, 2 disebut koefisien, sedangkan p dan q disebut variabel karena nilai p dan q bisa berubah-ubah. Adapun bentuk aljabar nomor (2) disebut suku dua karena bentuk aljabar ini memiliki dua suku, sebagai berikut.

1. Suku yang memuat variabel x, koefisiennya adalah 5.
2. Suku yang tidak memuat variabel x, yaitu 4, disebut konstanta. Konstanta adalah suku yang nilainya tidak berubah.

Sekarang, pada bentuk aljabar nomor (3), (4), dan (5), coba kamu tentukan manakah yang merupakan koefisien, variabel, konstanta, dan suku?

1. Penjumlahan dan Pengurangan Bentuk Aljabar

Pada bagian ini, kamu akan mempelajari cara menjumlahkan dan mengurangkan suku-suku sejenis pada bentuk aljabar. Pada dasarnya, sifat-sifat penjumlahan dan pengurangan yang berlaku pada bilangan riil, berlaku juga untuk penjumlahan dan pengurangan pada bentuk-bentuk aljabar, sebagai berikut.

a. Sifat Komutatif
a + b = b + a, dengan a dan b bilangan riil
b. Sifat Asosiatif
(a + b) + c = a + (b +c), dengan a, b, dan c bilangan riil
c. Sifat Distributif
a (b + c) = ab + ac, dengan a, b, dan c bilangan riil

Agar kamu lebih memahami sifat-sifat yang berlaku pada bentuk aljabar, perhatikan contoh-contoh soal berikut.
Contoh Soal :

Sederhanakan bentuk-bentuk aljabar berikut.
a. 6mn + 3mn
b. 16x + 3 + 3x + 4
c. –x – y + x – 3
d. 2p – 3p2 + 2q – 5q2 + 3p
e. 6m + 3(m2 – n2) – 2m2 + 3n2

Jawab:

a. 6mn + 3mn = 9mn
b. 16x + 3 + 3x + 4 = 16x + 3x + 3 + 4
= 19x + 7
c. –x – y + x – 3 = –x + x – y – 3
= –y – 3
d. 2p – 3p2 + 2q – 5q2 + 3p = 2p + 3p – 3p2 + 2q – 5q2
= 5p – 3p2 + 2q – 5q2
= –3p2 + 5p – 5q2 + 2q
e. 6m + 3(m2 – n2) – 2m2 + 3n2 = 6m + 3m2 – 3n2 – 2m2 + 3n2
= 6m + 3m2 – 2m2 – 3n2 + 3n2
= m2 + 6m

Contoh Soal :

Tentukan hasil dari:
a. penjumlahan 10x2 + 6xy – 12 dan –4x2 – 2xy + 10,
b. pengurangan 8p2 + 10p + 15 dari 4p2 – 10p – 5.

Jawab:

a. 10x2 + 6xy – 12 + (–4x2 – 2xy + 10) = 10x2 – 4x2 + 6xy – 2xy – 12 + 10
= 6x2 + 4xy – 2
b. (4p2 – 10p – 5) – (8p2 + 10p + 15) = 4p2 – 8p2 – 10p –10p – 5 – 15
= –4p2 – 20p – 20


2. Perkalian Bentuk Aljabar

Perhatikan kembali sifat distributif pada bentuk aljabar. Sifat distributif merupakan konsep dasar perkalian pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. Perkalian Suku Satu dengan Suku Dua
Agar kamu memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari contoh soal berikut.

Contoh Soal :

Gunakan hukum distributif untuk menyelesaikan perkalian berikut.
a. 2(x + 3) c. 3x(y + 5)
b. –5(9 – y) d. –9p(5p – 2q)

Jawab:

a. 2(x + 3) = 2x + 6 c. 3x(y + 5) = 3xy + 15x
b. –5(9 – y) = –45 + 5y d. –9p(5p – 2q) = –45p2 + 18pq

b. Perkalian Suku Dua dengan Suku Dua
Agar kamu memahami materi perkalian suku dua dengan suku dua bentuk aljabar, pelajari contoh soal berikut.

Contoh Soal :

Tentukan hasil perkalian suku dua berikut, kemudian sederhanakan.
a. (x + 5)(x + 3) c. (2x + 4)(3x + 1)
b. (x – 4)(x + 1) d. (–3x + 2)(x – 5)

Jawab:

a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3
= x2 + 5x + 3x + 15
= x2 + 8x + 15
b. (x – 4)(x + 1) = (x – 4)x + (x – 4)1
= x2 – 4x + x – 4
= x2 – 3x – 4
c. (2x + 4)(3x + 1) = (2x + 4)3x + (2x + 4)1
= 6x2 + 12x + 2x + 4
= 6x2 + 14x + 4
d. (–3x + 2)(x – 5) = (–3x + 2)x + (–3x + 2)(–5)
= –3x2 + 2x + 15x – 10
= –3x2 + 17x – 10

Contoh Soal :

Diketahui sebuah persegipanjang memiliki panjang (5x + 3) cm dan lebar
(6x– 2) cm. Tentukan luas persegipanjang tersebut.

Jawab:

Diketahui : p = (5x + 3) cm dan l = (6x – 2) cm
Ditanyakan : luas persegipanjang
Luas = p × l
= (5x + 3)(6x – 2)
= (5x + 3)6x + (5x + 3)(–2)
= 30x2 + 18x – 10x – 6
= 30x2 + 8x – 6
Jadi, luas persegipanjang tersebut adalah (30x2 + 8x – 6) cm2

Amati kembali Contoh Soal. Ternyata perkalian dua suku bentuk aljabar (a + b) dan (c + d) dapat ditulis sebagai berikut.
(a + b)(c + d) = (a + b)c + (a + b)d
= ac + bc + ad + bd
= ac + ad + bc + bd

Cara seperti ini merupakan cara lain yang dapat digunakan untuk menyelesaikan perkalian antara dua buah suku bentuk aljabar. Pelajari contoh soal berikut.

Contoh Soal :

Selesaikan perkalian-perkalian berikut dengan menggunakan cara skema.
a. (x + 1)(x + 2) c. (x – 2)(x + 5)
b. (x + 8)(2x + 4) d. (3x + 4)(x – 8)

Jawab:

a. (x + 1)(x + 2) = x2 + 2x + x + 2
= x2 + 3x + 2
b. (x + 8)(2x + 4) = 2x2 + 4x + 16x + 32
= 2x2 + 20x + 32
c. (x – 2)(x + 5) = x2 + 5x –2x –10
= x2 + 3x – 10
d. (3x + 4)(x –8) = 3x2 – 24x + 4x – 32
= 3x2 – 20x – 32

3. Pembagian Bentuk Aljabar

Pembagian bentuk aljabar akan lebih mudah jika dinyatakan dalam bentuk pecahan. Pelajarilah contoh soal berikut.

Contoh Soal :

Tentukan hasil pembagian berikut.
a. 8x : 4 c. 16a2b : 2ab
b. 15pq : 3p d. (8x2 + 2x) : (2y2 – 2y)
Jawab:


http://www.crayonpedia.org/mw/Berkas:Jawab_aljabar_1.jpg

4. Perpangkatan Bentuk Aljabar
Di Kelas VII, kamu telah mempelajari definisi bilangan berpangkat. Pada bagian ini materi tersebut akan dikembangkan, yaitu memangkatkan bentuk aljabar. Seperti yang telah kamu ketahui, bilangan berpangkat didefinisikan sebagai berikut.
http://www.crayonpedia.org/wiki/images/c/cc/Rumus_aljabar_2.jpg

Untuk a bilangan riil dan n bilangan asli.

Definisi bilangan berpangkat berlaku juga pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.

a. a5 = a × a × a × a × a
b. (2a)3 = 2a × 2a × 2a = (2 × 2 × 2) × (a × a × a) = 8a3
c. (–3p)4 = (–3p) × (–3p) × (–3p) × (–3p)
= ((–3) × (–3) × (–3) × (–3)) × (p × p × p × p) = 81p4
d. (4x2y)2 = (4x2y) × (4x2y) = (4 × 4) × (x2 × x2) × (y × y) = 16x4y2

Sekarang, bagaimana dengan bentuk (a + b)2? Bentuk (a + b)2 merupakan bentuk lain dari (a + b) (a + b). Jadi, dengan menggunakan sifat distributif, bentuk (a + b)2 dapat ditulis:

(a + b)2 = (a + b) (a + b)
= (a + b)a + (a + b)b
= a2 + ab + ab + b2
= a2 + 2ab + b2

Dengan cara yang sama, bentuk (a – b)2 juga dapat ditulis sebagai:

(a – b)2 = (a – b) (a – b)
= (a – b)a + (a – b)(–b)
= a2 – ab – ab + b2
= a2 – 2ab + b2

Contoh Soal :
http://www.crayonpedia.org/wiki/images/a/a2/Jawab_aljabar_2.jpg

Selanjutnya, akan diuraikan bentuk (a + b)3, sebagai berikut.

(a + b)3 = (a + b) (a + b)2
= (a + b) (a2 + 2ab + b2) (a+b)2 = a2 + 2ab + b2
= a(a2 + 2ab + b2 ) + b (a2 + 2ab + b2 ) (menggunakan cara skema)
= a3 + 2a2b + ab2 + a2b + 2ab2 + b3 (suku yang sejenis dikelompokkan)
= a3 + 2a2b + a2b + ab2 +2ab2 + b3 (operasikan suku-suku yang sejenis)
= a3 + 3a2b + 3ab2 + b3

Untuk menguraikan bentuk aljabar (a + b)2, (a + b)3, dan (a + b)4, kamu dapat menyelesaikannya dalam waktu singkat. Akan tetapi, bagaimana dengan bentuk aljabar (a + b)5, (a + b)6, (a + b)7, dan seterusnya? Tentu saja kamu juga dapat menguraikannya, meskipun akan memerlukan waktu yang lebih lama. Untuk memudahkan penguraian perpangkatan bentuk-bentuk aljabar tersebut, kamu bisa menggunakan pola segitiga Pascal . Sekarang, perhatikan pola segitiga Pascal berikut.

http://www.crayonpedia.org/wiki/images/9/94/Pascal.jpg

Hubungan antara segitiga Pascal dengan perpangkatan suku dua bentuk aljabar adalah sebagai berikut.
http://www.crayonpedia.org/mw/Berkas:Pascal2.jpg

Sebelumnya, kamu telah mengetahui bahwa bentuk aljabar (a + b)2 dapat diuraikan menjadi a2 + 2ab + b2. Jika koefisien-koefisiennya dibandingkan dengan baris ketiga pola segitiga Pascal, hasilnya pasti sama, yaitu 1, 2, 1. Ini berarti, bentuk aljabar (a + b)2 mengikuti pola segitiga Pascal. Sekarang, perhatikan variabel pada bentuk a2 + 2ab + b2. Semakin ke kanan, pangkat a semakin berkurang (a2 kemudian a). Sebaliknya, semakin ke kanan pangkat b semakin bertambah (b kemudian b2). Jadi, dengan menggunakan pola segitiga Pascal dan aturan perpangkatan variabel, bentuk-bentuk perpangkatan suku dua (a + b)3, (a + b)4, (a + b)5, dan seterusnya dapat diuraikan sebagai berikut.

(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
dan seterusnya.

Perpangkatan bentuk aljabar (a – b)n dengan n bilangan asli juga mengikuti pola segitiga Pascal. Akan tetapi, tanda setiap koefisiennya selalu berganti dari (+) ke (–), begitu seterusnya. Pelajarilah uraian berikut.

(a – b)2 = a2 – 2ab + b2
(a – b)3 = a3 – 3a2b + 3ab2 – b3
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
(a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5

B. Pemfaktoran Bentuk Aljabar
1. Pemfaktoran dengan Sifat Distributif

Di Sekolah Dasar, kamu tentu telah mempelajari cara memfaktorkan suatu bilangan. Masih ingatkah kamu mengenai materi tersebut? Pada dasarnya, memfaktorkan suatu bilangan berarti menyatakan suatu bilangan dalam bentuk perkalian faktor-faktornya. Pada bagian ini, akan dipelajari cara-cara memfaktorkan suatu bentuk aljabar dengan menggunakan sifat distributif. Dengan sifat ini, bentuk aljabar ax + ay dapat difaktorkan menjadi a(x + y), di mana a adalah faktor persekutuan dari ax dan ay. Untuk itu, pelajarilah Contoh Soal berikut.

Contoh Soal :

Faktorkan bentuk-bentuk aljabar berikut.
a. 5ab + 10b c. –15p2q2 + 10pq
b. 2x – 8x2y d. 1/2 a3b2 + 1/4 a2b3

Jawab:

a. 5ab + 10b
Untuk memfaktorkan 5ab + 10b, tentukan faktor persekutuan dari 5 dan
10, kemudian dari ab dan b. Faktor persekutuan dari 5 dan 10 adalah 5.
Faktor persekutuan dari ab dan b adalah b.
Jadi, 5ab + 10b difaktorkan menjadi 5b(a + 2).

b. 2x – 8x2y
Faktor persekutuan dari 2 dan –8 adalah 2. Faktor persekutuan dari x dan x2y adalah x.
Jadi, 2x – 8x2y = 2x(1 – 4xy).

c. –15p2q2 + 10pq
Faktor persekutuan dari –15 dan 10 adalah 5. Faktor persekutuan dari p2q2 dan pq adalah pq.
Jadi, –15p2q2 + 10pq = 5pq (–3pq + 2).

d. 1/2 a3b2 + 1/4 a2b3
Faktor persekutuan dari 1/2 dan 1/4 adalah 1/4.
Faktor persekutuan dari a3b2 adalah a2b3 adalah a2b2.
Jadi, 1/2 a3b2 + 1/4 a2b3 = 1/4 a2b2 (2a +b)

2. Selisih Dua Kuadrat
Perhatikan bentuk perkalian (a + b)(a – b). Bentuk ini dapat ditulis
(a + b)(a – b) = a2 – ab + ab – b2
= a2 – b2
Jadi, bentuk a2 – b2 dapat dinyatakan dalam bentuk perkalian (a + b) (a – b).
http://www.crayonpedia.org/mw/Berkas:Jawab_aljabar_3.jpg
Bentuk a2 – b2 disebut selisih dua kuadrat

Contoh Soal :

Faktorkan bentuk-bentuk berikut.
a. p2 – 4 c. 16 m2 – 9n2
b. 25x2 – y2 d. 20p2 – 5q2

Jawab:

a. p2 – 4 = (p + 2)(p – 2)
b. 25x2 – y2 = (5x + y)(5x – y)
c. 16m2 – 9n2 = (4m + 3n)(4m – 3n)
d. 20p2 – 5q2 = 5(4p2 – q2) = 5(2p + q)(2p – q)

3. Pemfaktoran Bentuk Kuadrat

a. Pemfaktoran bentuk ax2 + bx + c dengan a = 1

Perhatikan perkalian suku dua berikut.
(x + p)(x + q) = x2 + qx + px + pq
= x2 + (p + q)x + pq
Jadi, bentuk x2 + (p + q)x + pq dapat difaktorkan menjadi (x + p) (x + q). Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q, dan c = pq.

Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b.
Agar kamu lebih memahami materi ini, pelajarilah contoh soal berikut.

Contoh Soal :

Faktorkanlah bentuk-bentuk berikut.
a. x2 + 5x + 6 b. x2 + 2x – 8

Jawab:

a. x2 + 5x + 6 = (x + …) (x + …)
Misalkan, x2 + 5x + 6 = ax2 + bx + c, diperoleh a = 1, b = 5, dan c = 6.
Untuk mengisi titik-titik, tentukan dua bilangan yang merupakan faktor dari 6
dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan 5.
Faktor dari 6 adalah 6 dan 1 atau 2 dan 3, yang memenuhi syarat adalah 2 dan
Jadi, x2 + 5x + 6 = (x + 2) (x + 3)
b. x2 + 2x – 8 = (x + …) (x + …)
Dengan cara seperti pada (a), diperoleh a = 1, b = 2, dan c = –8.
Faktor dari 8 adalah 1, 2, 4, dan 8. Oleh karena c = –8, salah satu dari
dua bilangan yang dicari pastilah bernilai negatif. Dengan demikian, dua
bilangan yang memenuhi syarat adalah –2 dan 4, karena –2 × 4 = –8 dan
–2 + 4 = 2.
Jadi, x2 + 2x – 8 = (x + (–2)) (x + 4) = (x – 2) (x + 4)

b. Pemfaktoran Bentuk ax2 + bx + c dengan a ≠ 1
Sebelumnya, kamu telah memfaktorkan bentuk ax2 + bx + c dengan a = 1. Sekarang kamu akan mempelajari cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1.

Perhatikan perkalian suku dua berikut.
(x + 3) (2x + 1) = 2x2 + x + 6x + 3
= 2x2 + 7x + 3
Dengan kata lain, bentuk 2x2 + 7x + 3 difaktorkan menjadi (x + 3) (2x + 1). Adapun cara memfaktorkan 2x2 + 7x + 3 adalah dengan membalikkan tahapan perkalian suku dua di atas.
2x2 + 7x + 3 = 2x2 + (x + 6 x) +3 (uraikan 7x menjadi penjumlahan dua suku yaitu pilih ( x + 6x )
= (2x2 + x) + (6x + 3)
= x(2x + 1) + 3(2x + 1) (Faktorkan menggunakan sifat distributif)
= (x + 3)(2x+1)
Dari uraian tersebut dapat kamu ketahui cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1 sebagai berikut.

1. Uraikan bx menjadi penjumlahan dua suku yang apabila kedua suku tersebut dikalikan hasilnya sama dengan (ax2)(c).
2. Faktorkan bentuk yang diperoleh menggunakan sifat distributif

Contoh Soal :

Faktorkan bentuk-bentuk berikut.
a. 2x2 + 11x + 12 b. 6x2 + 16x + 18
Jawab:
a. 2x2 + 11x + 12 = 2x2 + 3x + 8x + 12
= (2x2 + 3x) + (8x + 12)
= x(2x + 3) + 4(2x + 3)
= (x + 4)(2x + 3)
Jadi, 2x2 + 11x + 12 = (x + 4)(2x + 3).
b. 6x2 + 16x + 8 = 6x2 + 4x + 12x + 8
= (6x2 + 4x) + (12x + 8)
= 2x(3x + 2) + 4(3x + 2)
= (2x + 4)(3x + 2)
Jadi, 6x2 + 16x + 8 = (2x + 4)(3x +2)

PECAHAN DALAM BENTUK ALJABAR
1. Penjumlahan dan Pengurangan Pecahan Bentuk Aljabar

Di Kelas VII, kamu telah mempelajari cara menjumlahkan dan mengurangkan pecahan. Pada bagian ini, materi tersebut dikembangkan sampai dengan operasi penjumlahan dan pengurangan pecahan bentuk aljabar. Cara menjumlahkan dan mengurangkan pecahan bentuk aljabar adalah sama dengan menjumlahkan dan mengurangkan pada pecahan biasa,
yaitu dengan menyamakan penyebutnya terlebih dahulu.

BILANGAN BULAT

Bilangan bulat terdiri dari bilangan cacah (0, 1, 2, ...) dan negatifnya (-1, -2, -3, ...; -0 adalah sama dengan 0 dan tidak dimasukkan lagi secara terpisah). Bilangan bulat dapat dituliskan tanpa komponen desimal atau pecahan.

Himpunan semua bilangan bulat dalam matematika dilambangkan dengan Z , berasal dari Zahlen (bahasa Jerman untuk "bilangan").


Himpunan Z tertutup di bawah operasi penambahan dan perkalian. Artinya, jumlah dan hasil kali dua bilangan bulat juga bilangan bulat. Namun berbeda dengan bilangan asli, Z juga tertutup di bawah operasi pengurangan. Hasil pembagian dua bilangan bulat belum tentu bilangan bulat pula, karena itu Z tidak tertutup di bawah pembagian.

LAMBANG BILANGAN BULAT
Lambang bilangan bulat bentuk panjangnya merupakan hasil penjumlahan dari perkalian bilangan dengan pemangkatan bilangan 10.
Contoh:
2.345 = 2.000 + 300 + 40 + 5
= 2x103 + 3 x102 + 4 x101 + 5 x 100
2.345 = 2 ribuan + 3 ratusan + 4 puluhan + 5 satuan


MENENTUKAN TEMPAT NILAI BILANGAN
Contoh:
1) 53.451
Dibaca lima puluh tiga ribu empat ratus lima puluh satu.
2) 212.583
Dibaca dua ratus dua belas ribu lima ratus delapan puluh tiga
3) 2.523.459
Dibaca dua juta lima ratus dua puluh tiga ribu empat ratus lima puluh sembilan
Himpunan Bilangan Bulat

Bilangan bulat adalah bilangan yang terdiri dari:
a Bilangan bulat positif (bilangan asli)
b Bilangan nol
c. Bilangan bulat negatif (lawan bilangan asli)


SIFAT PERKALIAN DARI URUTAN BILANGAN BULAT

a. Jika a > b, dan c bilangan bulat positif, maka a x c > b x c
jika a < b, dan c bilangan bulat positif, maka a x c < b x c Contoh 1) 6 > 2 dan 6 bilangan bulat positif, maka 6x6 > 2x6
2) 5 < 7 dan 3 bilangan bulat positif, maka 5x3 < 7x3 b. Jika a > b, dan c bilangan bulat negatif, maka axc < bxc Jika a < b, dan c bilangan bulat negatif, maka axc > bxc
Contoh
1) -2 >-6 dan -3 (bilangan bulat negatif), maka -2 x (-3) < -6 x (-3) 2) -3 < 2 dan -5 (bilangan bulat negatif), maka -3 x (-5) > 2x(-5)

c. Jika a > b atau a < b, dan c adalah bilangan nol, maka axc = bxc = 0 Contoh 1) 4 > -2, maka 4 x 0 = -2 x 0 = 0
2) 3 < 5, maka 3 x 0 = 5 x 0 = 0




LAWAN BILANGAN BULAT

a. Setiap bilangan bulat mempunyai tepat satu lawan yang juga merupakan bilangan bulat
b. Dua bilangan bulat dikatakan berlawanan, apabila dijumlahkan menghasilkan nilai nol.
a + (-a) = 0
Contoh
1) Lawan dari 4 adalah -4, sebab 4 + (-4) = 0
2) Lawan dari -7 adalah 7, sebab -7 + 7 = 0
3) Lawan dari 0 adalah 0, sebab 0 + 0 = 0

OPERASI BILANGAN BULAT
Penjumlahan dan pengurangan bilangan bulat
a. menjumlahkan bilangan positf
contoh:
3+5+=8
b.penjumlahan bilangan negatif
contoh:
-4 + (-3)=-7
c.penjumlahan bilangan positif dengan bilangan negatif
contoh:
5+(-2)=3
d. Menjumlahkan bilangan bulat negatif dengan bilangan positif.
Contoh
-6 + 8 = 2, digambarkan pada garis bilangan.

PERKALIAN BILANGAN BULAT
Perkalian adalah penjumlahan berulang sebanyak bilangan yang dikalikan.
Contoh:
2 x 3 - 3 + 3 = 6

SIFAT-SIFAT PERKALIAN SUATU BILANGAN
a. Perkalian bilangan positif dengan bilangan positif, hasilnya positif.
Contoh:
1) 4 x 5 = 5 + 5 + 5 + 5 = 20
2) 7 x 8 = 56
3) 12 x 15 = 180
b Perkalian bilangan positif dengan bilangan negatif, hasilnya negatif.
Contoh:
1) 4 x (-5) = (-5) + (-5) +(-5) +(-5) = -20
2) 7 x (-8) = -56
3) 12 x (-15) = -180
c. Perkalian bilangan negatif dengan bilangan positif, hasilnya negatif.
Contoh:
1) -4 x 5 = -(5 + 5 + 5 + 5) = -20.
2) -7 x 8 = -56
3) -12x 15 = -180
d. Perkalian bilangan negatif dengan bilangan negatif, hasilnya positif.
Contoh:
1) -4 x (-5) = -[-5 + (-5) + (-5) + (-5)] = -[-20] = 20
2) -7 x (-8) = 56
3) -12 x (-15) = 180
Kesimpulan:
a.+ x + = +
b.+ X - = -
c.- X + = -
d.- x - = +

PEMBAGIAN BILANGAN BULAT
Pembagian bilangan bulat

Pembagian merupakan operasi kebalikan dari perkalian
Contoh
12 : 4 = 3, karena 4 x 3 = 12 atau 3 x 4 = 12
42 : 7 = 6, karena 7 x 6 = 42 atau 6 x 7 = 42


Sifat-sifat pembagian bilangan bulat
a. Pembagian bilangan positif dengan bilangan positif, hasilnya positif
Contoh
1) 63 : 7 = 9
2) 143 : 11 = 13
b. Pembagian bilangan positif dengan bilangan negatif, hasilnya negatif
Contoh:
1) 63 : (-9) = -7
2) 72 : (-6) = -12
c. Pembagian bilangan negatif dengan bilangan positif, hasilnya negatif
Contoh:
1) -63 : 7 = -9
2) -120 : 10 = -12
d. Pembagian bilangan negatif dengan bilangan negatif, hasilnya positif.
Contoh:
1) -72 : (-8) = 9
2) -120 : (-12) = 10

MENGGUNAKAN SIFAT OPERASI HITUNG PADA BILANGAN BULAT
Sifat komutatif

Sifat komutatif (pertukaran) pada penjumlahan dan perkalian.
a + b = b + a
a x b = b x a, berlaku untuk semua bilangan bulat


Contoh:
1) 2 + 4 = 4 + 2 = 6
2) 3 + 5 = 5 + 3 = 8
3) 4 x 2 = 2 x 4 = 8
4) 3 x 2 = 2 x 3 = 6

Sifat asosiatif

Sifat asosiatif (pengelompokan) pada penjumlahan dan perkalian.
(a + b) + c = a + (b+c)
(a x b) x c = a x (bxc), berlaku untuk semua bilangan bulat

Contoh:
1) (2+4) + 6 = 2 + (4+6) = 12
2) (3+6) + 7 = 3 + (6+7) = 16
3) (3x2) x 4 = 3 x (2x4) = 24
4) (3x5) x 2 = 3 x (5x2) = 30

Sifat distributif (penyebaran)

a x (b + c) = (a x b) + (a x c), yang berlaku untuk semua bilangan bulat.

Contoh
1) 4 x (5 + 2) = (4 x 5) + (4 x 2) = 28
2) 5 x (7 + 3) = (5 x 7) + (5 x 3) = 50

OPERASI CAMPURAN
Aturan dalam mengerjakan operasi campuran adalah sebagai berikut.
1 .Operasi dalam tanda kurung dikerjakan terlebih dahulu.
2. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
3. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau
pengurangan.


Contoh
1. a. 20 + 30 – 12 = 50 – 12 = 38
b. 40 – 10 - 5 = 30 – 5 = 25
c. 40 - (10 - 5) = 40 – 5 = 35


2. a. 600 : 2O : 5 = 30 : 5 = 6
b. 600 : (20 : 5) = 600 : 4 = 150
c. 5 x 8 : 4 = 40 : 4 = 10


3. a. 5 x (8 + 4) = 5 x 12 = 60
b. 5 x 8 -4 = 40 – 4 = 36
c. 5 x (8 – 4) = 5 x 4 = 20
 
Copyright (c) 2010. Blogger templates by Bloggermint